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Abstract. Recently it has been shown that the nearly free electron model for describing the 
electrical, magnetic and optical properties of expanded liquid caesium has already broken 
down by the time three times the critical density is reached. i.e. long before the transition 
from the metallic to the non-metallic state occurs, which seems to coincide with the critical 
pointoftheliqui~vapourphasetransition(T, = 1924K,pc = 92 bar,& = 0.38gcm-'). We 
discuss the deviations from the nearly free electron model within the framework of a 
consistent quantum statistical approach to the electrical conductivity. which leads to a 
generalized Ziman formula. taking into account electron-electron scattering, arbitrary 
degeneracy and screening. Further possible mechanisms that might contribute to the behav- 
iour of the electrical conductivity, such as the formation o i  bound states, are also discussed. 

1. Introduction 

Over the last few years, considerable effort has been put into investigating thestructural, 
thermodynamic, electrical and magnetic properties of liquid alkali metals expanded by 
heating towards their liquid-vapour critical points (for a review, see e.g. [I]). Measure- 
ments of the liquid-vapour coexistence curve, the electrical conductivity, the static 
magnetic susceptibility and the Knight shift of expanded Liquid caesium have indicated 
that a metal-nonmetal transition occurs near the critical point of the liquid-vapour 
phase transition. This implies that the interatomic forces must exhibit drastic changes 
as the density of the fluid is decreased towards the critical value. 

Recently, Winter e t a l [ 2 , 3 ]  determined the staticstructure factor S(Q)  and the pair 
correlation function g ( R )  of fluid caesium over wide ranges of temperature and pressure 
by neutron diffraction experiments. They found that the dominant effect on the physical 
properties during the expansion derives from a reduced average coordination number 
N I  rather than from an increased next-neighbour distance R I .  

Measurements of the electrical DC conductivity [4] have shown that the metallic 
properties of the fluid phase are lost at conditions close to the critical point and that the 
metal-nonmetal transition probably coincides with the liquid-vapour critical point (see 
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figure 1; T, = 1924 K, pc  = 92 bar, pc = 0.38 g ~ m ‘ ~  [ 5 ] ) .  By correlating the structural 
and electrical conductivity data with known equation of state data, further information 
about the electrical transport in expanded fluid metals can be gained. In particular, the 
comparison with the standard theoretical approach to the electrical propertiesof liquid 
metals. the Ziman-Faber theory. exhibits the limitingvalidityof the nearlyfreeelectron 
model. 

A general theoretical treatment of fluid metals at low densities is still lacking but 
thereisacloseconnection to the behaviourofdense andlow-temperature plasmas which 
are continuously following the density-temperature domain of expanded fluids in the 
supercritical region. We will present a consistent quantum statistical approach which 
has been successfully applied for calculating the transport properties of non-degenerate, 
partially ionized hydrogen and alkali plasmas 16-131. However, it  is also valid for 
describing the electronic transport in degenerate electron systems such as the expanded 
fluid metals. We studied the influence of different mechanisms in order to explain the 
deviations observed between the experimental values for the electrical conductivity and 
the standard Ziman-Faber theory at lower densities. 

2. The electrical conductivity 

The electrical conductivity of Coulomb systems is known in the limiting cases of non- 
degenerate low-density plasmas (Spitzer formula [14]). and highly degenerate liquid 
metals (Ziman formula [15]). Since the conductivity governed by the Coulomb inter- 
action is a universal function of the temperature and density, a consistent quantum 
statistical approach to thetransport coefficients should be valid for arbitrary degeneracy. 

The formation of such a general approach to the transport coefficients is possible 
within the frame of linear response theory, given here in an extended version originally 
developed by Zubarev [16] for mechanical and non-mechanical perturbations of an 
open system. The starting point is the Liouviile-von Neumann equation for the non- 
equilibrium statistical operator p which determines the time-dependent mean values of 
arbitrary operators (A)’ = Trb(r)A}. 

( a i a M 0  + (i/fi)lH(O, p(r)j = 0 (10) 



The electrical conductivity of expanded liquid caesium 1661 

H =  H s  + U F  H F = - E x e , r ; = - E . R  (1b) 

H S  = Ec(k)a: (k)a,(k)  + B 2 ecedv(daT (k + q)a,i (P - q)adp)a,(W. 
c k  e.d kpq 

His the Hamilton operator for an electron-ion system with an external electric field E ,  
&(k) = h2k2/2m, denotes the kinetic energy of particles of species c = e, i and V(q)  = 
43c/q2 is the Coulomb interaction. a:(k)  and a,(k) are the creation and annihilation 
operators, respectively, for a particle in the state (k) ,  here k denotes the spin and wave 
number vector, and e, is the electrical charge of particles of speciesc. 

Equation ( l a )  has to be modified in order to account for the time irreversibility 
of the evolution of the system. Besides the projection operator method [17] for the 
construction of a so-called 'relevant' statistical operator prel(t), the definition of a gen- 
eralized Gibbsstate astherelevant statisticaloperator wasemployed by Robertson [lS], 
and later by Zubarev [16], for the derivation of a general, irreversible equation of 
motion. Within this method, the relevant statistical operator 

(2) 
1 

Z r e ,  
,orel = - ew ( - P W ~  - .+ P 2 F ~ w ~ )  

(where (I is the chemical potential, N is the particle number, and /3 = l/k,T) is deter- 
mined from the maximum of entropy S(t)  = -kB Tr{p,,(t) In prcl(t)} at given mean 
values (B,)'of a set of relevant observables { E , ] .  These quantities characterize the non- 
equilibrium state and fulfil the subsidiary conditions 

which simultaneously fix the thermodynamic parameters FJr). In the case of thermo- 
dynamic equilibrium, no further relevant observables are needed and (E,} = 0. This 
corresponds to the Kubo method. 

However, the relevant statistical operator (2) is not a solution of the Liouville- 
vonNeumannequation(1a) but itcan beemployedtodefinethecorrect initialconditions 
for solving it. Assuming the principle of weakeningof initial correlations [19], and with 
reference to Abel's theorem (201. the following equation of motion can be derived for 
the non-equilibrium statistical operator: 

a I 

at b-n 

(Ev) '  = T r b W , }  = T r b r e d t ) ~ J  (3) 

(4) -&) + [ W ) ,  ~ ( 4 1  = lim EW) - pre~(O1. 

The limit E +  + 0 has to  be taken after the thermodynamic limit. Finally, the general 
solution of (4) can be given after integrating by parts, 

p(t) = p,,(r) - lim 1' dt' exp(E(r - t ' ) )  exp 
r-0 _r 

The non-equilibrium statistical operator p(t) is determined by the relevant statistical 
operator pcel(t) which is a function of the mean values (Eu)'' at previous time instants 
t' < t. Thisnon-localityin timeisusuallyinterpretedasa memoryeffect.Thegenera1ized 
Kubo approach for the non-equilibrium statistical operator (4). (5) can be employed 
for the derivation of quantum kinetic equations for, for example, the one-particle 
distribution function, by taking the operators of single-particle states as the relevant 
one6 [21]. 
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On the other hand, linearizing the general solution (5) with respect to the external 
field HF as well as to the response parameters Fv, and supposing the stationary case 
(&} = 0, a generalized Boltzmann equation can be derived (221: 

E ( ( d ,  B , )  + ( d ( E ) ;  Is,)) = xFn*((bv, ,  B . )  + ( id l , * (E) ;  b")). (6) 
Y'  

The equilibrium correlation functions in equation (6) are defined by 

1 s  
( A , B )  =-I drTr(p,A(-iht)B) A(!) = exp(iHs!/h)A(0)exp(-iHSt/h) 

P O  17) 
\ ' I  

0 1 
2 0  

(44; B)  = \-= drexp(EI)(A(& B )  

i.e. 

Pa = -exp[-P(Hs - U N ) ] .  

In this paper, we employ generalized momenta P, for the set of relevant observables, 

{ B J  = { f " }  P" = hk[BE,(k)l"a:(k)a,(k) R = - ePo/me. (8) 
k 

The most simple contributions Po and P determine the electrical and the heat current 
in the system via 

(See, e.g., [7].) 52, and h are the system volume and the enthalpy per particle, respect- 
ively. Applying a finite set of momenta P,(n = 0, l . .  . , , L) for the characterization of 
the non-equilibrium state, the response parameters F, have to be determined from 
equation (6) bycramer'srule and for theelectrical conductivity, ofollowsfrom equation 
(9a) (for detailssee [7-91): 

The elements of the determinants are equilibrium correlation functions No, = Nmo = 
(Po,  fm) /me  and d., = (P.(E); P,) defined according to (7). 

Equation (10) is valid for arbitrary degeneracy. For the non-degenerate case, the 
Spitzer result for fully ionized plasmas can be obtained within at least a four-momenta 
approximation (i.e. considering L = 3), expressing, furthermore, the correlation func- 
tions by T matrices for electron-ion and electron4ectron scattering, and calculating 
these quantities within the partial wave method [6,101: 

usp = 0.59~[(4rr~~)~/e~m~"~~'~][ln(3R~~l)]-' (11) 

where I = e2 / (4x~okBT)  is the Landau length, R, = [kBTEo/(2n,e2)]1/2 is the Debye 
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screening length, and n, = N,/Qo. For the more general case of dense plasmas, many- 
particle effects can be treated within the present correlation function method. The 
influence of dynamic screening [23], Pauli blocking [24], the Debye-Onsager relaxation 
effect [9], the formation of bound states [7,11-131 and structure factor effects [6] were 
investigated for dense hydrogen and alkali plasmas. 

For the opposite case, such as that of the degenerate electron systems such as liquid 
metals which are characterized by a strongly coupled ion system, equation (10) yields, 
within a one-momentum approximation (i.e. considering only Po),  the well-known 
Ziman formula 

with the ion structure factor 

the dielectric function E(Q) and the Fermi distribution function f ( E )  = [exp@(E - 
113) + 1I-l. The usual Ziman formula describes the resistivity of a liquid metal on the 
basis of the nearly free electron model, it  depends on the appropriate choice of the 
electron-ion pseudopotential V,;(Q) and the approximation for the dielectric function 

Winter eta1 [2,3] observed a deviation of the electrical conductivityfrom the Ziman 
formula (12) at densities approaching the critical density when applying the measured 
data for the static structure factor S(Q) of caesium. The present approach (10) allows 
for different improvements of the usual Ziman formula which can be considered for the 
explanation of these observed deviations: 

4Q). 

(i) allowance for arbitrary degeneracy, 
(ii) inclusion of higher momenta P, for the calculation of the electrical conductivity 

(iii) consideration of electron-electron scattering processes, 
(iv) treatment of the ionization equilibrium which accounts for bound electrons and 

which leads to a decrease of the number of free charge carriers. 
Furthermore, we investigate the influence on the numerical results for the electrical 
conductivity of different pseudopotentials V,,(Q) (Ashcroft empty-core potential (251, 
the Heine-Abarenkov potential [26], and a modified version of Hasegawa er af [27]) and 
different screening functions & ( e )  (Lindhard function with local-field corrections). 

We have to calculate the equilibrium correlation functions No,, d,, in order to 
determine the electrical conductivity (loa). The generalized particle numbers Nom are 
given by 

where I&) denotes Fermi integrals and Il,2(ae) = n , i : / 2 ,  if = 2n/3h2/m, being the 
electronic thermal wave length. The force-force correlation functions d,, can be de- 
composed into the relevant scattering contributions of the free (conducting) electrons, 
i.e. electron-ion and electron-electron scattering processes: 
d,, = d z  f d z  

(lo), 

Nom = N J U m  + ~/~)/~(S/~)I[I,+I/Z(~~)/II,Z(~~)I (13) 
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x { a ( p t - s ’ ) 2 + S Z x 2 ( S Z t p ’  -2SZx”l 

X [ A i  l/A+2cosh(sQx/2)]-’ [ B +  l/B+2cosh(pQx/2)]-’ (146) 

A = exp(s’/2 + Q 2 / S  - p g c )  

The electron-ion contribution was determined by means of the Ashcroft empty-core 
potential V,4(Q), the  Heine-Abarenkovpotential V;*(Q), and a new local emply-core 
potential Vl(Q) proposed recently by Hasegawa etal[27]: 

V,4(Q) = [-4xZe‘/Q2] cos(QRc) 

VE(Q) = [-4aZe2/Q2J cos(Qrc)[[l+aQz/(Q2 +b’)] exp(-bRc)(l +tan(Qrc))J. 

B = exp(p2/2 + Q2/8 - p f ;  j d g  = dE0 = 0. 

VEA(Q) = [-4nZe’/(Q3Rc)] sin(QRc) 

(15) 

Thc respective cut-off radii Rc were chosen to match the electrical conductivity near the 
melting point, measured by Cook [28]. The values of a and b are due to Matsuda et a1 
[29] who determined the parameters a = 22 and b = 1.2/aB (OB Bohr radius) so as to fit 
the form of the pseudopotential to the electron-ion potential which was calculated in 
the local density functional approximation. However, they have chosen the cut-off 
radius Rc = 3.25 aB so as to reproduce theoretically the position of the first peak and the 
low-Q behaviour of the observed structure factor S(Q) near the triple point. 

The dielectric function can be represented as 

(16) 
E(Q) = 1 + [I - G(Q)]gH4nez/Q’ 

g~ = ( k ~ t n . / X ~ f i ~ ) [ $  + (4kE - Q2/4kFQ) l f l I (2k~ + Q)/(2k~ - Q)Il 

where gH denotes the Hartree screening function which is decreased due to local-field 
corrections C(Q). The influence of different expressions for C(Q) is investigated. We 
apply here the expressions derived by Sham [30], Shaw [31], and lchimaru and Utsumi 
[32] (see also Vashishta and Singwi [33]). 

The static structure factor S(Q) which enters into the Coulomb logarithm L(k) 
was taken from experiment 121. The electron-dectron contribution to the correlation 
function was calculated numerically for arbitrary degeneracy [34], it tends to lower the 
electrical conductivity. V,,(Q) = 4xe2/Qz denotes the Coulomb potential. 

3. Comparison of experimental and theoretical results for the electrical conductivity 

We have considered the following improvements in order to explain the deviations 
observed in the experimental values for the DC conductivity when compared with a 
calculation using the simple Ziman formula. 
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3.1.  Arbitrary degeneracy 

The replacement of the sharp Fermi surface (integration J p F  d e .  . .) for complete 
degeneracy by the Fermi distribution function (integration Jj dQf(Q/Z) . . .) for arbi- 
trary degeneracy has only a small effect on the results, because the electron system is 
still in the degenerate domain above the critical density considered here. However, for 
lower densities characteristicof the vapour phase. these effects become important. For 
instance, the electrical conductivity is increased by about 8% for the lowest density given 
here. 

3.2. Inclusion of higher momentu 

The Zubarev method for calculating the electrical conductivity (loa) is rapidly con- 
verging with respect to a systematic extension of the set of relevant momenta {Pa} [IO, 
13,341. For instance, the Spitzer result (11) valid for the low-density limit is obtained 
within even a four-momenta approximation. With increasing density, the influence of 
higher momenta becomes less important and in the limit of complete degeneracy a one- 
momentum approximation yields the Ziman formula (12) 1351. For the nearly critical 
region considered here, the degeneracy of the electron system is not complete and the 
consideration of higher momenta P,, for calculating the electrical conductivity (loa) 
leads to an increase of the respective values. However, the increase within a three- 
momenta approximation amounts to less than 1% for the densities considered here. 

3.3. Electron-electron scattering 

When including higher momenta, we have to consider, in addition, the electron-electron 
correlation functions dFm ( d g  = 0). Electron-electron scattering leads to a lowering of 
theelectricalconductivity. In the low-densitylimit (ll), theprefactoroftheconductivity 
is therefore 0.591 instead of 1.015 for a Lorentz gas. The influence of electron-electron 
scattering decreases with increasing density (compare [34]) and vanishes in the limit of 
complete degeneracy. For the conditions considered here, electron-electron scattering 
decreases the electrical conductivity by up to 10% for the lowest density of about 
1 x IO2’ ~ m - ~ .  

Before we present the results accounting for partial ionization, the influence of the 
chosen electron-ion pseudopotential and of the screening function are discussed. We 
have calculated the electrical conductivity (loa), (14) within a one-momentum approxi- 
mation applying the Ashcroft, Heine-Abarenkov and Hasegawa pseudopotentials and 
inserting in all cases different expressions for the local-field corrections in the dielectric 
function [30-321, see table 1. The choice of the electron-ion pseudopotential affects the 
results for the electrical conductivity only weakly. The use of the Hasegawa empty-core 
potential gives rise to small improvements as compared with the Ashcroft potential. 
However, local-field corrections have a strong influence on the results and the best 
data currently available, Ichimaru and Utsumi [32], yield a lowering of the electrical 
conductivityof about 50% incomparison tothe valuesobserved with thesham dielectric 
function [30] for the lowest densities considered here. Both the Ashcroft and the 
Heine-Abarenkovpotentials yieldconductivitieslower than theexperimental valuesfor 
densities greater than about 1.3 gcm-3. The last row in table 1, the Hasegawa empty- 
core potential with local-field corrections in the Ichimaru and Utsumi [32] form, shows 
the best overall agreement. 
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Table I. The electrical conductivity (12) of Cs liquid in P ’ c m - ’  using various pseudo- 
potentials V ( Q )  and local field corrections in the dielectric function r (Q)  for diiiercnt 
temperatures T and densities p.  The cut-off radii Rc were fitted io match the measured 
elcctricalconductivity[28] iorT= 373 Kandp = 1 . 8 g ~ m - ~ .  

Ashcroft Heine-Abarenkov Hasegawa 

Sham Shaw IU Sham Shaw IU Sham Shaw IU 

313 
1.8W 

773 
1.567 

973 
1.452 

I173 
1.332 

1373 
1.209 

1673 
0.956 

1923 
0.590 

R, ( a d  

22 I60 22140 22 180 22190 22210 22190 22240 22010 22 190 

10240 9196 8890 10670 9244 8999 9992 10470 10810 

87-37 7095 6681 8669 7189 6845 7978 8224 8329 

6123 4880 4560 6502 5030 4761 5894 5618 5618 

5140 3830 3567 5481 3998 3783 4936 4342 4297 

2936 1916 1731 3151 7.040 1877 2808 2119 2003 

1488 

2.214 

815 

2.516 

70 1 

2.502 

1592 

4.125 

875 

4.685 

767 

4.683 

1430 

2.576 

868 

2.851 

767 

2.855 

In table 2we compare these values CB) with the experimental data of Cook [28] and 
No11 er ai [4]. For comparison we present the results of the most simple approach using 
the Ziman formula (sharp Fermi surface) with the Ashcroft potential and the local-field 
corrections by Sham. Furthermore, we present the electrical conductivity given by 
Hoshino er a/ [36] CA’) which was obtained by means of the Ziman formula (12) with 
the Hasegawa potential and with local field corrections by Ichimaru and Utsumi (with 
the cut-off radius R, fitted by Matsuda eta1 [29] to the observed structure data). The 
deviation of our numerical results from the experimental data is less than 10% for 
densities up to 1 . 3 g ~ m - ~ .  For lower densities the theoretical results are still up to 
50% too high. For conditions less than about three times the critical density another 
mechanism obviously becomes operative, which leads to a further lowering of the 
electrical conductivity. 

3.4. Ionization equilibrium 

The analysis of the equation of state data within a model calculation for the composition 
of dense alkali plasmas [ l l ]  indicates that the degree of ionization is strongly reduced 
near thecritical point due to the formationof bound states(localizede1ectrons). Besides 
atoms Cs, also dimers Cs2 and molecular ions Cs: are formed. They ean reach a 
maximum concentration of about 20% and 40%. respectively, near the critical point 
(see figure 2). This is in good agreement with the results obtained by measurements of 
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Table 2. The electrical conductivity of Cs liquid in Q-'cm-' obtained from equation (12) 
compared to the experimental values of Cook [ZS] and Noll el a l [4 ] .  Ashcroft and Sham: 
Ashcroft empty-core potential and Sham dielectric hinction 1301; Hasegawa and IU: Hase- 
gawya empty-core potential and Ichimaru/Utsumi dielectric function 1321. A. re~ults of 
Hoshino el a1 [36] with Rc fitted to observed structure data; B, present calculation with Rc 
fitted to theconductivityat themeltingpoint;C,considerationof theionizationequilibrium 
(the degree of ionization isgiven in the brackets). 

Hasegawa and IU 

T W  Ashcroft C 
~ ( g c m - ? )  andsham A B (a,"") Experiment 

~ 

373 
1 .800 

773 
1.567 

973 
1.452 

1173 
1.332 

1373 
1.209 

1673 
0.956 

1923 
0.590 

22200 

IO 100 

8060 

5940 

4940 

2760 

1370 

2.214 

16600 

14100 

129W 

10000 

7080 

3090 

490 

3.25 

22000 22196 [28] 

10800 102M)[4] 

8330 8330 7800[41 
(I .OO) 

5620 5040 5070[4] 
(11.95) 

4300 3840 3550[4] 
((1.94) 

2000 1670 1770 (41 
(0.90) 

770 460 500 141 
(0.70) 

2.855 

the magnetic susceptibility [37]. The extension of the present theoretical approach (IO) 
to the more general case of partial ionization can immediately be performed [7,11-131. 
The strong decrease of the electrical conductivity near the critical point can be explained 
by the reduction of the number of charge carriers due to the formation of bound states. 

The number of free charge carriers, and thus also the electrical conductivity, decreases 
on approaching the critical point. The respective values for aare  indicated in table 2 by 
thelabel 'C'and show a better agreement with theexperimentalvaluesfor nearlycritical 
conditions. The degree of ionization resulting from the calculation of the equation of 
state for alkali plasmas [ I l l  isgiven in the brackets. 

The ionization equilibrium becomes effective for densities below p = 1.3 g 

4. Conclusions 

The deviations from the usual Ziman formula at densities below 1.3 g cm3 occur in that 
range where the onset of the magnetic susceptibility enhancement [37,38] and the 
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Figure 2. The composition of caesium for T = 2000 K as a function of [he total ion density 
[ I l l .  

incrcasc of the effective electron mass as obtained from optical measurements 1391 
indicated that electron-electron correlation becomes important. Though its effect on 
theelcctrical conductivity issmall in thisdensity region, our calculations have alsoshown 
that electron-electron scattering is not negligible. 

The influence of smeared-out Fermi surface and of higher momenta in calculating 
the electrical conductivity is small in the parameter region considered here. 

We have shown that the empty-core potential of Hasegawa er al[27] gives rise to 
slightly improved results for the electrical conductivity compared with the use of the 
Ashcroft and the Heine-Abarenkov potential. The consideration of local-field cor- 
rections in the dielectric function decreases the screening effects of the electron-ion 
interaction and thus, also, the electrical conductivity compared with the case of only 
Hartree screening. In particular, considering local-field corrections in the Ichimaru and 
Utsumi [32] form yields a reasonable agreement with experimental data [4J except for 
nearly critical conditions, 

asit wasexperimentallyobserved. andcould not bedescribed by any systematic improve- 
ment of the Ziman formula (12). seems to be the reduction of the number of free charge 
carriers due to the formation of bound states. 

Themaineffect in thedrasticloweringoftheelectricalconductivity below1.3g 
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